機械学習のエッセンス
実装しながら学ぶPython、数学、アルゴリズム
本書は具体的なデータ分析の手法を説明する意図で書かれたものではありません。
実用的な目的ならscikit-learnやChainerなどの既存のフレームワークを使うべきですが、本書では機械学習のいくつかの有名なアルゴリズムを、自分でゼロから実装することを目標としています。こうすることにより、とかくブラックボックスになりがちな機械学習の仕組みを理解し、さらなる応用力と問題解決力を身につけることができるようになります。
また、処理系にはデファクトスタンダードであるPythonを使い、機械学習に必要な数学の知識もわかりやすく解説しています。
これから機械学習を始める学生さんや、いきなりプロジェクトに放り込まれていまいち理解できないままデータ分析の仕事をしているエンジニアの方にも最適です。
■目次:
第01章 学習の前に
第02章 Pythonの基本
第03章 機械学習に必要な数学
第04章 Pythonによる数値計算とデータの可視化
第05章 機械学習のアルゴリズム